If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2d^2+14d=0
a = 2; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·2·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*2}=\frac{-28}{4} =-7 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*2}=\frac{0}{4} =0 $
| 8(3x+6)=9(2x-4 | | -6d-8=10d | | Z=3-y | | 2-2x=3x+7 | | 8x–2*4=48 | | 3(j-73)=3 | | 5x+77=8 | | -2m=-62 | | 10+12p=16 | | 13m+6.00=97 | | 15x-4=14x-4 | | 13x+14=x^2 | | 4y-1=30 | | 4.3(x+2.5)=1.4x−7.6+0.4x | | 21y=y^2+38 | | 3^(x-1)+3^x=12 | | 3(j–73)=3 | | 5x+3(3x-5)=-29 | | 45-4u=5u | | 1.2x^2+29.4x-890.7=0 | | 3x(x-5)-3x2=-30 | | (2+4i)(7-2i)-(6+i)=16+23i | | 6(v+7)=96 | | -2+3v=1 | | 45-9x=13+7x | | 1.2x^2-29.4x-890.7=0 | | 5x=-70-3(2x-5) | | 36x-8=45 | | 8-2m=12 | | 10x-5-2x=4(x+2) | | x*0.05=1500 | | 2(r-4)=6 |